Fabrication of TiO2 nanotubes by using electrodeposited ZnO nanorod template and their application to hybrid solar cells

نویسندگان

  • Seok-In Na
  • Seok-Soon Kim
  • Woong-Ki Hong
  • Jeong-Woo Park
  • Jang Jo
  • Yoon-Chae Nah
  • Takhee Lee
  • Dong-Yu Kim
چکیده

Vertically aligned TiO2 nanotubes have been fabricated on the indium-doped tin oxide (ITO) by a simple and versatile technique using the lectrochemically deposited ZnO nanorods, oriented along the c-axis, as a template in the spin-on based sol–gel reaction of a Ti precursor. The iameter, length, and shape of TiO2 nanotubes were controlled by changing the initial ZnO nanorod template and the spin conditions during sol–gel rocess of a Ti precursor. Scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis, and X-ray diffraction (XRD) were used o confirm the successful formation of TiO2 nanotubes and characterize their structure and morphology. Furthermore, as an application of the TiO2 anotubes, hybrid solar cells based on TiO2 and poly[2-methoxy,5-(2′-ethyl-hexyloxy)1,4-phenylenevinylene] (MEH-PPV) were successfully abricated. 2007 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of TiO2 nanorods with a microwave assisted solvothermal method and their application as dye-sensitized solar cells

Inthiswork, Titanium dioxide (TiO2) nanostructures have beensynthesized via amicrowave assisted solvothermalmethod using titanium tetraisopropoxide (TTIP),polyvinylpyrrolidone(PVP) and Ascorbic Acid (AA) in ethanol. The mole ratio ofPVP/AA was found to be critical in determining the morphology and crystal phaseof the final product. PVP/AA mole ratio varied from 1 up to 1...

متن کامل

Further Improvement in Efficiency of ZnO Nanorod Based Solar Cells Using ZnS Quantum Dots as Light Harvester and Blocking Layer Material

Zinc oxide nanorod arrays (ZnO NRs) were grown on the ZnO seed layers via an aqueous solution using hydrothermal method and their photovoltaic properties were investigated. It was found that the growth period of 20 minutes is the optimum condition for ZnO nanorods growth, the cell containing these nanorods was considered as a reference cell. In order to further increase the cell performance, Zn...

متن کامل

Fabrication of dye sensitized solar cells with a double layer photoanode

Dye sensitized solar cell was fabricated from a double layer photoanode. First, TiO2 nanoparticles  were synthesized by hydrothermal method. These TiO2 NPs were deposited on FTO glasses by electrophoretic deposition  method in applied voltage of 5 V and EPD time of 2.5-10 min. Then TiO2 hollow spheres (HSs) were synthesized by sacrificed template method with Carbon Spheres as template and TTIP ...

متن کامل

بهبود چگالی جریان و افزایش کارایی سلول خورشیدی پلیمری P3HT:PCBM با استفاده از نانومیله اکسید روی

Hybrid solar cells combine organic and inorganic materials with the aim of utilizing the low cost cell production of organic photovoltaics (OPV) as well as obtaining other advantages, such as tuneable absorption spectra, from the inorganic component. Whilst hybrid solar cells have the potential to achieve high power conversion efficiencies (PCE), currently obtained efficiencies are quite low. T...

متن کامل

Fabrication, and Effect of Reflux time on Structural Properties of Pure and Al-Doped TiO2 Nano-rod

TiO2 nanorods can be used as dye-sensitized solar cells and as various sensors and photocatalysts. These nanorods are synthesized by a using thermal corrosion process in a NaOH solution at 200 oC with TiO2 powder as a source material. In the present work, the synthesis of TiO2 nanorods in anatase, rutile and Ti8O15 phases and the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007